M 317 assignment 4 solutions

7. Suppose a_n assumes only integer values. Under what conditions does this sequence converge?

If $\{a_n\}$ contains only integer values then the a_n are all isolated points. Then the only way for there to be a limit point for this sequence is if a_n = constant for all n greater than some N.

- 8 Either give an example of a sequence with the following property or else state a theorem that shows why no such example is possible.
 - **a**. a sequence that is monotone increasing but is not bounded $\{a_n\} = \{n\}$
 - **b**. a sequence that converges to 6 but contains infinitely many terms that are not equal to 6 as well as infinitely many terms that are equal to 6 $a_n = 6 + \frac{1 + (-1)^n}{n}$
 - c. an increasing sequence that is bounded but is not convergent. Not possible due to monotone seq theorem
 - **d**. a sequence that converges to 6 but no term of the sequence actually equals 6. $a_n = 6 + \frac{1}{n}$
 - e. a sequence that converges to 6 but contains a subsequence converging to 0. Not possible as this sequence would have two limit points, zero and six.
 - f. a convergent sequence with all negative terms whose limit is not negative $a_n = \frac{-1}{n}$ converges to 0 (which is not negative) but $a_n < 0$ for all *n*.
 - **g**. an unbounded increasing sequence containing a convergent subsequence. Not possible as the convergent subsequence would have to be bounded but any subsequence of an unbounded sequence is unbounded.
 - h. a convergent sequence whose terms are all irrational but whose limit is rational. $a_n = 1 + \frac{\sqrt{2}}{n}$

- **9** For each of the following sequences state a theorem which establishes the convergence/divergence:
 - **a**. $a_n = n^{1/3}$ not bounded, therefore divergent (theorem 2.1)
 - **b**. $a_n = \frac{n^2 + 3}{n + 2}$ not bounded, therefore divergent (theorem 2.1)
 - c. $a_n = (2 + 10^{-n})(1 + (-1)^n)$ has two limit points, 0 and 2, so it is divergent (theorem 2.3)
 - d. $a_n = \frac{1}{n^2 + 3n + 2} < \frac{1}{n^2}$ so converges by squeeze theorem (theorem 2.4)
 - **e**. $a_n = 1 + 2^{-n}$ monotone decreasing bounded below by 1, so convergent to 1 (theorem 2.2)
 - f. $a_n = \sqrt{n+1}$ not bounded, therefore divergent (theorem 2.1)
 - **g**. $a_n = \sum_{k=1}^n \frac{1}{k}$ showed in class that $a_{2n} a_n$ does not tend to 0 as $n \to \infty$, therefore not Cauchy and not convergent. (theorem 2.9)
 - h. $\{a_n\} = \{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, ...\}$ has two limit points, 0 and 1, so it is divergent (theorem 2.3)
- **14** Show that if, $a_n = \frac{n+1}{n}$ then $|a_n a_m| \le 10^{-3}$ when $m > n > 10^3$. Is $\{a_n\}$ a Cauchy sequence?

$$|a_n - a_m| = \left| \frac{n+1}{n} - \frac{m+1}{m} \right|$$
$$= \left| \frac{m-n}{mn} \right| < \frac{1}{n} \quad if \quad m > n$$

Then $|a_n - a_m| \le 10^{-3}$ when $m > n > 10^3$, hence $\{a_n\}$ is a Cauchy sequence.