M 317 assignment 4 solutions
7. Suppose a_{n} assumes only integer values. Under what conditions does this sequence converge?

If $\left\{a_{n}\right\}$ contains only integer values then the a_{n} are all isolated points. Then the only way for there to be a limit point for this sequence is if $a_{n}=$ constant for all n greater than some N.

8 Either give an example of a sequence with the following property or else state a theorem that shows why no such example is possible.
a. a sequence that is monotone increasing but is not bounded $\left\{a_{n}\right\}=\{n\}$
b. a sequence that converges to 6 but contains infinitely many terms that are not equal to 6 as well as infinitely many terms that are equal to 6 $a_{n}=6+\frac{1+(-1)^{n}}{n}$
c. an increasing sequence that is bounded but is not convergent. Not possible due to monotone seq theorem
d. a sequence that converges to 6 but no term of the sequence actually equals 6. $a_{n}=6+\frac{1}{n}$
e. a sequence that converges to 6 but contains a subsequence converging to 0 . Not possible as this sequence would have two limit points, zero and six.
f. a convergent sequence with all negative terms whose limit is not negative $a_{n}=\frac{-1}{n}$ converges to 0 (which is not negative) but $a_{n}<0$ for all n.
g. an unbounded increasing sequence containing a convergent subsequence. Not possible as the convergent subsequence would have to be bounded but any subsequence of an unbounded sequence is unbounded.
h. a convergent sequence whose terms are all irrational but whose limit is rational. $a_{n}=1+\frac{\sqrt{2}}{n}$

9 For each of the following sequences state a theorem which establishes the convergence/divergence:
a. $\quad a_{n}=n^{1 / 3}$ not bounded, therefore divergent (theorem 2.1)
b. $\quad a_{n}=\frac{n^{2}+3}{n+2}$ not bounded, therefore divergent (theorem 2.1)
c. $a_{n}=\left(2+10^{-n}\right)\left(1+(-1)^{n}\right)$ has two limit points, 0 and 2 , so it is divergent (theorem 2.3)
d. $\quad a_{n}=\frac{1}{n^{2}+3 n+2}<\frac{1}{n^{2}}$ so converges by squeeze theorem (theorem 2.4)
e. $a_{n}=1+2^{-n}$ monotone decreasing bounded below by 1 , so convergent to 1 (theorem 2.2)
f. $a_{n}=\sqrt{n+1}$ not bounded, therefore divergent (theorem 2.1)
g. $\quad a_{n}=\sum_{k=1}^{n} \frac{1}{k}$ showed in class that $a_{2 n}-a_{n}$ does not tend to 0 as $n \rightarrow \infty$, therefore not Cauchy and not convergent. (theorem 2.9)
h. $\quad\left\{a_{n}\right\}=\left\{1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, 1, \frac{1}{5}, \ldots\right\}$ has two limit points, 0 and 1 , so it is divergent (theorem 2.3)

14 Show that if, $a_{n}=\frac{n+1}{n}$ then $\left|a_{n}-a_{m}\right| \leq 10^{-3}$ when $m>n>10^{3}$. Is $\left\{a_{n}\right\}$ a Cauchy sequence?

$$
\begin{aligned}
\left|a_{n}-a_{m}\right| & =\left|\frac{n+1}{n}-\frac{m+1}{m}\right| \\
& =\left|\frac{m-n}{m n}\right|<\frac{1}{n} \quad \text { if } \quad m>n
\end{aligned}
$$

Then $\left|a_{n}-a_{m}\right| \leq 10^{-3}$ when $m>n>10^{3}$, hence $\left\{a_{n}\right\}$ is a Cauchy sequence.

